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Abstract
We propose an extension to the technique of fluctuation electron microscopy that
quantitatively measures a medium-range order correlation length in amorphous
materials. In both simulated images from computer-generated paracrystalline
amorphous silicon models and experimental images of amorphous silicon, we
find that the spatial autocorrelation function of dark-field transmission electron
micrographs of amorphous materials exhibits a simple exponential decay. The
decay length measures a nanometre-scale structural correlation length in the
sample, although it also depends on the microscope resolution. We also propose
a new interpretation of the fluctuation microscopy image variance in terms of
fluctuations in local atomic pair distribution functions.

1. Introduction

Understanding of the properties of amorphous and glassy materials has been hindered by
incomplete knowledge of their atomic structure. Until recently, direct experimental data
about atomic structure in disordered materials were essentially limited to structure factors
S(k) obtained by diffraction [1–3]. The Fourier transform of S(k) yields the pair distribution
function, g2(r), which gives the probability of finding two atoms in the sample separated by
a distance r . Although some additional structural information can be inferred from optical,
spectroscopic and nuclear magnetic resonance data [4–8], most of the effort in understanding
amorphous materials has focused on structural models with a g2(r) consistent with experiment.
The general conclusion of these studies is that model amorphous structures are more or less
consistent with that of the continuous random network (CRN) model [9].
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However, g2(r) is not very sensitive to medium-range order (MRO), the ∼1 nm scale
structure present in many amorphous materials. Evidence for MRO comes from the anomalous
first sharp diffraction peak found in many ionic and covalent glasses [10] and from small
angle scattering [11]. MRO is believed to affect diffusive, mechanical, optical and electronic
properties of amorphous materials. For example, the opto-electronic properties of amorphous
silicon deteriorate with time [12], which is relevant for solar-cell and flat panel display
applications. There is an accompanying change in MRO, but little attendant change in the
diffraction spectrum [13–18].

Treacy and Gibson [19] have developed a technique called fluctuation electron microscopy
(FEM) to provide more information about MRO in amorphous materials. FEM is the statistical
analysis of fluctuations in diffraction from nanometre-scale volumes. Such local diffraction
can be measured using a transmission electron microscope (TEM). FEM reveals information
based on higher-order atomic distribution functions, which are more sensitive to medium-range
structure than g2(r) [26].

FEM has been used most extensively in studies of amorphous germanium (a-Ge) and
silicon (a-Si). The most striking conclusion from these studies is that as-deposited ‘amorphous’
structures contain MRO [20] which is not exhibited by computer-generated CRN models of
those materials [21–24]. Instead, the structure of a-Ge and a-Si is better represented by a
paracrystalline (PC) model [25]. A PC structure consists of very small, 1–2 nm ordered
grains in a CRN matrix. The grains are topologically crystalline, but are strongly strained
by the surrounding matrix. This strain, potentially combined with a relatively small grain
volume fraction, renders the structure indistinguishable from a CRN by diffraction. The
grains, however, cause large local fluctuations in the diffraction from small volumes, so they
have a clear FEM signature.

Almost all of the FEM experiments to date have focused on the second moment or variance
V of the diffracted intensity distribution. V is systematically measured as a function of the
scattering vector magnitude k. (This is described in detail in the next section.) While V (k) is a
sensitive probe of the presence and magnitude of MRO, it does not yield a quantitative measure
of the characteristic length scale of the ordering, which for a-Si we identify with the PC grain
size. This is because the sampling volume of the diffraction measurement is fixed by the size
of the TEM point-spread function, or image resolution. It has been shown in simulations [26]
and in preliminary experiments [27] that systematic measurements as a function of image
resolution can yield an MRO length scale. Unfortunately, these measurements are difficult
to make. The resolution of a TEM must be changed mechanically, so a typical TEM can
only make measurements at four or five distinct resolutions, which is insufficient data for the
previous proposed methods [26].

We propose a different approach to measuring the MRO length scale based on a single-
resolution data set. Instead of measuring V (k), we consider the diffracted intensity spatial
autocorrelation function c(r). We show in simulations that c(r) has a simple exponential
decay form, and that the decay length depends on both the sample structure and the image
resolution. Even under unfavourable conditions, measurements at the few discrete resolutions
available in most TEMs should serve to extract the sample length scale.

Both V (k) and c(r) address a fundamental difficulty with electron micrographs of
amorphous materials: they appear almost completely random to the eye. V (k) measures
quantitatively whether an image has larger excursions away from the mean intensity (more
or brighter bright pixels, or more or darker dark pixels) than a purely random image. c(r)

measures quantitatively whether there are groups of pixels with similar intensity that are larger
or occur more often than in a purely random image. The decay length of c(r) is a simple but
quantitative measure of the characteristic size of these non-random groupings of pixels.
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Fan and Cowley [28] have previously considered the autocorrelation function of high-
resolution TEM micrographs as a measure of MRO in amorphous materials. Their analysis
focused on finding visual patterns (‘fringes’) in the two-dimensional autocorrelation function;
we focus on quantifying the functional form of the azimuthally averaged autocorrelation. They
also worked at only the best resolution available with their TEM. We address the effects of the
TEM by systematically studying the effects of the image resolution.

In the next section we provide a theoretical description of the fluctuation microscopy and
mathematically define V (k) and c(r) in terms of the sample structure and the microscope
imaging conditions. We then describe the autocorrelation function calculated from simulated
images of computer-generated structures, which allow us to test our proposed measure of MRO
under controlled conditions. Finally, we demonstrate from experimental images that our new
analysis generates the same trends as the previous V (k) FEM analysis, but with a greater level
of quantification.

2. Theory

The central idea of FEM is to study the statistics of the image intensity. The simplest statistic
is the average intensity. The average intensity is simply connected to S(k), so it has little
information about MRO. One more complicated statistic is the variance, or the normalized
second moment V , defined as

V (k, Q) = 〈I 2(r,k, Q)〉 − 〈I (r,k, Q)〉2

〈I (r,k, Q)〉2
= 〈I 2(r,k, Q)〉

〈I (r,k, Q)〉2
− 1, (1)

where I (r,k, Q) is the image intensity at point r, k is the scattering wavevector, Q controls
the microscope resolution and 〈〉 indicates averaging over r.

For a thin TEM specimen consisting of a single element imaged at moderate real-
space resolution (∼10–20 Å) the kinematic coherent dark-field image intensity, I (r,k, Q)

is proportional to [19]

I (r,k, Q) ∝
∑

i

∑

j

Ai (r)A j(r) exp(−2πk · ri j), (2)

where ri j is the vector separating atom i from atom j , and the sums run over all the atoms in
the sample. A j(r) is the point-spread function of the microscope, centred about the position
of atom j . A j(r) is determined by the size and shape of the microscope objective aperture
and the objective lens aberrations. For the simplest case of a circular aperture of radius Q and
negligible lens aberrations, A j(r) is the Airy function,

A j (r) = J1[2π Q|r − r j |]
2π Q|r − r j | , (3)

where J1 is the first-order Bessel function. If, instead of using plane wave illumination, we use
hollow-cone illumination by averaging over all the in-plane directions of the scattering vector,
the image intensity becomes

I (r, k, Q) ∝
∑

j

∑

l

A(2π Q|r − r j |)A(2π Q|r − ri |)J0(2πk|r j − ri |), (4)

where k = |k| and J0 is the zeroth-order Bessel function. A detailed derivation of all the
imaging equations in consistent notation may be found in [29].
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Equation (4) suggests an interpretation of the image intensity as a Fourier transform of a
local pair distribution function g2A(r ′, r, Q) weighted by the Airy function. g2A(r ′, r, Q) is
defined as

g2A(r ′, r, Q) =
∑

j

∑

i

A(2π Q|r − r j |)A(2π Q|r − ri |)δ(|ri − r j | − r ′), (5)

where δ(r) is the Dirac δ-function. Equation (4) can be recovered by integrating g2A(r ′, r, Q)

times J0(2πkr ′) over r ′, i.e., performing a rotationally invariant Fourier transform in cylindrical
coordinates. Normally a distribution function like g2(r) is an average quantity of the entire
sample. Here, contributions to g2A(r ′, r, Q) come only from a small volume centred at point r
of size proportional to 1/Q, the width of the Airy function. If we used a step function instead
of an Airy function for the weight, g2A(r ′, r, Q) would be exactly a pair distribution function
for the cylinder centred at point r and extending through the thickness of the sample. That
would be equivalent to the well known column approximation in electron microscopy [30].

Formulating the image intensity in terms of g2A(r ′, r, Q) highlights the difference between
S(k) and V (k). S(k) is the Fourier transform of the spatially averaged pair distribution
function, g2(r), whereas V (k) measures the magnitude of spatial variation between local
functions g2A(r ′, r, Q). This description also provides another avenue to see the connection
between V (k) and higher-order distribution functions, since one way to define higher-order
distribution functions is through non-trivial correlations between local pair distributions.

Using g2A(r ′) also makes calculating I (r, k, Q) and related quantities such as V (k, Q)

much more computationally efficient. The algorithm proceeds as follows: first, g2A(r ′, r, Q)

is calculated by summing over all the atom pairs within the resolution volume (∼1/Q) around
point r. Since the resolution volume is finite, this calculation is independent of the model size
for a given thickness. Next, I (r, k, Q) is calculated by one-dimensional numerical integration
of g2A(r ′, r, Q) × J0(2πkr ′) over r ′ for the desired values of k and Q. Finally, this scheme is
repeated at different r to generate the image, pixel by pixel.

In this paper, we examine the spatial correlations in the image intensity using the
autocorrelation function, c(r). We define the normalized c(r) as

c(r) = 〈[I (r1, k, Q) − 〈I (k, Q)〉][I (r1 + r, k, Q) − 〈I (k, Q)〉]〉
〈[I (r1, k, Q) − 〈I (k, Q)〉]〉2

, (6)

where 〈〉 indicates averaging over r1. Further azimuthal averaging can also be performed to
yield a one-dimensional c(r), where r = |r|. c(r) is normalized to one at r = 0, and goes to
zero at large r . Since c(r) depends on I 2, it, like V (k), depends on the three- and four-atom
distribution functions. As we show in the rest of this paper, c(r) distils that information into a
form from which we can extract a quantitative MRO correlation length.

3. Simulated images

Simulated images from computer-generated model structures provide a way for us to explore
the properties of images from known structures. This has been a primary tool for understanding
FEM measurements using V (k) [25, 33], so we turn to it again to help us understand c(r).

We have generated a set of three structural models of PC a-Si using a molecular dynamics
synthesis route involving quenching liquid Si in the presence of small crystalline grains using
the empirical environment dependent interatomic potential [31]. Details of the synthesis have
been given previously [32, 33]. The models have PC grain diameters of 1.3, 1.6 and 1.9 nm,
and are labelled Para1, Para2 and Para3. In each case, the grains occupy ∼50% of the volume
of the model, so the larger grain models contain more atoms. The rest of each model is made
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Figure 1. Grey scale contour plots of the calculated image intensity for the CRN and Para1
structures according to equation (4). Q = 0.056 Å−1, which is a real-space resolution of ∼11 Å,
and k = 0.56 Å−1, which is the position of the second maximum in S(k) for a-Si.

up of CRN intergranular material. The earlier models [25, 33] contained only four PC grains
and �1000 atoms, which presented challenges for generalizing to real samples. Our new
models contain 64 randomly oriented grains and 8000–16 000 atoms, so they should be more
representative. A CRN model with a similar size with no grains was also synthesized for
comparison.

Figure 1 shows calculated dark-field images of the CRN and Para1 structures with
k = 0.56 Å−1 and Q = 0.056 Å−1 (real-space resolution of 11 Å). The value of k corresponds
to the second peak in the structure factor for amorphous Si. The images were calculated on a
square mesh with a mesh size of a0/2, where a0 = 5.43 Å is the lattice parameter of crystalline
Si. These images were calculated using equations (3)–(5) with a cut-off distance for the local
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Figure 2. V (k), the standard FEM signal, calculated at Q = 0.056 Å−1 for all the structures.

pair distribution functions, g2A(r ′), equal to 0.61/Q ≈ 11 Å, which is the position of the first
zero of the Airy function. Using a larger cut-off does not significantly change the results.

These images are in good agreement with images calculated with standard EM simulation
packages, e.g. autoslice by Kirkland [34], which is a full dynamical scattering simulation using
a plane-wave multislice algorithm. This has two important consequences. First, it means that
the assumptions that go into equation (4), namely kinematic scattering and negligible lens
aberrations, are very good, at least at the small thickness of the models. In a zone-axis oriented
crystal, dynamical scattering becomes important in only a few nanometres [35]. Second, the
code based on equation (4) is much faster than the full dynamical treatment, which makes
it computationally feasible to screen large portions of the model configuration and imaging
parameter phase spaces simultaneously.

The images in figure 1 are displayed on the same grey scale to make it clear that the
Para1 image exhibits larger intensity fluctuations than the CRN image. These fluctuations
are quantified in figure 2, which shows V (k) for all the models. V (k) for the CRN is
small, and essentially featureless. V (k) for Para1 is larger, and shows two clear peaks at
k = 0.31 and 0.56 Å−1. The magnitude of these peaks increases with increasing MRO, as
noted previously [25, 33]. The structure factor S(k) of the models (not shown) displays only
small changes from the CRN to Para2. Para3 shows some splitting of the second peak, which
is an experimental indicator of crystallinity.

Now we turn our attention to the intensity autocorrelation function, c(r). Figure 3(a)
shows c(r) calculated using equation (6) for all the model structures with Q = 0.056 Å−1

and k = 0.56 Å−1. In all cases c(r = 0) = 1, and c(r) decays to zero for large r . However,
the decay rate is fastest for the CRN and decreases with increasing MRO. This is even more
apparent on the log-normal plot shown in figure 3(b). In the 5–10 Å range all c(r) functions
are well fitted by an exponential decay,

c(r) = exp(−r/λ), (7)

where λ is the decay length. λ is the smallest for the CRN structure, and increases as the size
of PC grains increases.

We also calculated c(r) at k = 0.31 Å−1, the position of the first peak in S(k) (as well as
V (k)), for the CRN and Para1 structures. As shown in figure 4, the correlation functions and
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Figure 3. The intensity autocorrelation functions, c(r) calculated for the simulated images of the
four model structures. Q = 0.056 Å−1 and k = 0.56 Å−1. (a) linear scale, (b) log-linear scale.
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Figure 4. The intensity autocorrelation functions, c(r), for CRN and Para1 structures calculated
at k = 0.31 and 0.56 Å−1, i.e., the position of the first and the second maximum in S(k) for a-Si.
The correlation lengths λ are relatively insensitive to k.

correlation lengths calculated for k = 0.31 and 0.56 Å−1 are essentially the same. We take
this as evidence that λ is sensitive primarily to the size of the PC grains, not the details of the
imaging conditions.

Figure 5(a) explicitly shows this correlation by graphing λ calculated at k = 0.56 Å−1 as a
function of d , the size of the crystalline grains introduced into the models during synthesis. d is
correlated with many other topological, real-space and experimental measures of MRO [33].
For Q = 0.11 Å−1 (5.5 Å real-space resolution), λ is approximately equal to 1/3d . For
Q = 0.055 Å−1 (11 Å real-space resolution),λ shows a weaker but still monotonic trend with d .

The effects of microscope resolution are shown in figure 5(b). λ systematically increases
with increasing real-space resolution. At large resolution �15 Å λ becomes more or less
proportional to the resolution. However, at small resolution, �5 Å, the value of the correlation
length becomes essentially resolution independent. It remains, however, correlated with the
structure: at small resolution, λ increases with the increasing PC grain size in the model. This
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Figure 5. (a) The correlation length λ as a function of the size of the grains introduced into the
model, d, at 5.5 and 11 Å real-space resolution and k = 0.56 Å−1. λ increases with d in both cases,
indicating correlation between λ and a known length scale in the model. (b) The correlation length
λ as a function of the real-space microscope resolution. At small resolution, λ is independent of
the resolution. At large resolution, λ depends on the sample structure and the resolution.

indicates that λ at small real-space resolutions directly measures the extent of the paracrystal
size. For resolutions �2 Å, the assumption of negligible lens aberrations start to break down,
but for a modern TEM it should still be valid for a resolution of 5 Å.

4. Experimental images

We have calculated the autocorrelation function from hollow-cone dark-field images of a
series of a-Si samples deposited at increasing substrate temperature. Samples were deposited
by magnetron sputtering on rock salt at a substrate temperature Ts of 200, 250, 300 and 350 ◦C
to a nominal thickness of 200 Å. Images were acquired on a Hitachi H9000 TEM at 200 kV
using an objective aperture with Q = 0.04 Å−1, which corresponds to a real-space resolution
of ∼15 Å. c(r) was calculated from images at k = 0.55 Å−1. We first azimuthally averaged
the c(r) from each image, then averaged the c(r) from ten images of the same sample. The
error bars are one standard deviation of the mean from the ten images. More details on the
sample preparation and imaging can be found in [37].

c(r) for these samples is reasonably well fitted by an exponential decay, as shown in
figure 6 for Ts = 200 and 350 ◦C. The straight lines are exponential fits to the data over the
range indicated. The small-r limit of the fit window was fixed at r = 2.34 Å to avoid the
short-range decay determined by large-scale structure in the sample. The large-r limit of the
fit window was selected independently for each sample to give a linear correlation coefficient
R � 0.9. For the lowest Ts = 200 ◦C, which is the best fit, this results in a fit from r = 2.34
to 11.12 Å, which is 17 data points. For the worst case, Ts = 300 ◦ C, the fit is from r = 2.34
to 5.85 Å, which is six data points.

The match to an exponential form in both simulated images from atomistic models and in
experimental data may tell us something important about the underlying PC structure. Previous
detailed analysis of the structure of smaller PC atomistic models has suggested that the PC
grains do not have a sharp interface with the amorphous matrix [32, 33]. Rather, they have
more ordered core, and the structural order decreases with distance from that core. The models
discussed here have the same property and an exponential c(r). A simple model of a structure
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Figure 6. Experimental c(r) from dark-field images of a-Si deposited on substrates held at
Ts = 200 and 350 ◦C. The straight lines are exponential decays fit to the data over the range
indicated. The fitting range is selected to yield a linear correlation coefficient R � 0.9. The poorer
fit at higher Ts is due to the large scale morphology of the sample.

with sharp interfaces, consisting of randomly placed overlapping spheres and some stochastic
noise does not produce an exponential form for c(r); instead c(r) decays more steeply to zero
near the diameter of the spheres. This suggests that the low-Ts experimental samples may also
have diffuse PC grain/amorphous matrix interfaces, while the higher-Ts samples may have
somewhat sharper interfaces.

However, the increasingly poor fit at large Ts is probably also strongly influenced by the
increasing tendency of the films to develop a beadlike morphology at a length scale of ∼350 Å.
This is not MRO, but simply a result of poor wetting of Si on the NaCl substrate. c(r) for a
random distribution of spheres is not an exponential, especially at larger r , so as this structure
becomes more apparent, the deviation of the experimental c(r) from an exponential form
grows. Methods have been developed to correct V (k) for this kind of structure [36]; similar
corrections will also need to be developed in the future for this new analysis.

Previous experiments in which V (k) was calculated from the same set of images indicated
that the degree of MRO increases monotonically with increasing Ts [37]. Figure 7 shows that
the same trend holds true in the decay length λ as a function of Ts . Over the range Ts = 200
to 350 ◦C, the electron structure factor barely changes [37]. This is evidence that λ from c(r)

is measuring similar MRO to V (k), but in a more quantitative way. To fully quantify these
observations would require measuring λ at several microscope resolutions, which has not yet
been done.

5. Summary

We propose a new quantitative measure of MRO in amorphous materials, related to the
technique of FEM. The spatial autocorrelation function of the dark-field TEM image intensity is
found to exhibit an exponential decay. The decay length is determined by an intrinsic structural
correlation length and the microscope resolution. Our analysis indicates that measurements
at a few discrete resolutions are sufficient to separate these effects and determine the intrinsic
correlation length. We have demonstrated this measure of MRO in simulated images from
computer-generated models of a-Si and in experimental images of a-Si. The correlation length
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Figure 7. Correlation length λ extracted from the autocorrelation function c(r) as a function of
substrate temperature during deposition Ts . These data show the same trend towards increasing
MRO with increasing Ts as previously observed [37].

from the simulations follows the degree of medium-range order introduced a priori into the
models. The correlation length in the experiment shows the same trend as previous FEM
measurements on the same samples.

A great deal of work remains to fully understand the properties of the autocorrelation
function and its decay length. Connections could be made analytically with three- and four-
body atom distribution functions, and hopefully with other aspects of the sample structure
such as a PC grain size or the bonding topology. Experimentally, we must find ways to deal
with variations in sample thickness and morphology which can affect the measured correlation
length and determine the number of measurements that must be made at different resolutions
to fully remove the effects of the microscope. Once this work is completed, we will have a
powerful new tool to quantitatively characterize medium-range order in amorphous materials.
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